How to Cite
de Jesús Gutiérrez R. (2020). Integration among world and low quality crude oil markets based on dynamic conditional correlations . Revista Finanzas y Política Económica, 11(2). https://doi.org/10.14718/RFYPE.2019.11.2.2574

Abstract

This paper tests the degree of integration between Mexico’s and world crude oil markets throughout the evolution of dynamics correlations during the stable, crisis and volatile periods. The estimations of DCC-GARCH model show that the correlations are positive and time-varying in responds to the origin of the oil price shocks in periods of relative calm and financial turmoil. Likewise, the results of statistic-t and bootstrap p-value confirm strongly that the correlations in the crisis period are significantly different from those in the stable and volatile periods, which provides evidence in favor of the regionalization hypothesis between crude oil markets. The findings have important economic and financial implications for the government and consumers.

Licence

Copyright (c) 2020 Revista Finanzas y Política Económica

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

References

Adelman, M. A. (1984). International oil agreements. Energy Journal, 5(3), 1-9. https://doi.org/10.5547/ISSN0195-6574-EJ-Vol5-No3-1

Bachmeier, L. J. y Griffin, J. M. (2006). Testing for market integration crude oil, coal, and natural gas. Energy Journal, 27(2), 55-71. https://doi.org/10.5547/ISSN0195-6574-EJ-Vol27-No2-4

Bentzen, J. (2007). Does OPEC influence crude oil price? Testing for co-movements and causality between regional crude oil prices. Applied Economics, 39(11), 1375-1385. https://doi.org/10.1080/00036840600606344

British Petroleum (2017). Statistical Review of World Energy. Londres: BP:

Candelon, B., Joëts, M. y Tokpavi, S. (2013). Testing for Granger causality in distribution tails: An application to oil markets integration. Economic Modeling, 31, 276-285.
https://doi.org/10.1016/j.econmod.2012.11.049

Caporin, M. y McAleer, M. (2013). Ten things you should know about the dynamic conditional correlation representation. Econometrics, 1(1), 115-126. https://doi.org/10.3390/econometrics1010115

Collins, D. y Biekpe, N. (2003). Contagion a fear for Africa equity market? Journal of Economics and Business, 55(3), 285-297. https://doi.org/10.1016/S0148-6195(03)00020-1

Cook, J. (1998). California crude oil [Mimeo]. Recuperado de www.eia.doe.gov/pub/

De Jesús, R. (2016). Estrategias dinámicas de cobertura cruzada eficiente para el mercado del petróleo mexicano: evidencia de dos modelos GARCH multivariados con término de corrección de error. Economía: Teoría y Práctica, 44, 115-146.

Domínguez, R. M., Venegas, F. y Palafox, A. O. (2018). Short-and long-term relations among prices of the Mexican Crude Oil Blend, West Texas Intermediate, and Brent: Market Trend and Risk Premia, 2005-2016. International Journal of Energy Economics and Policy, 8(3), 87-91.

Energy Information Administration (2012). International Energy Statistics. Recuperado de https://www.eia.gov/international/data/world

Engle, R. F. (2002). Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models. Journal of Business and Economics Statistics, 20(3), 339-350. https://doi.org/10.1198/073500102288618487

Ewing, B. T. y Harter, C. L. (2000). Co-movements of Alaska North Slope and UK Brent crude oil prices. Applied Economics Letters, 7(8), 553-558. https://doi.org/10.1080/13504850050033373

Fattouh, B. (2010). The dynamics of crude oil price differentials. Energy Economics, 32(2), 334-342. https://doi.org/10.1016/j.eneco.2009.06.007

Forbes, K. y Rigobon, R. (2002). No contagion, only interdenpendence: measuring stock market co-movements. Journal of Finance, 57(5), 2223-2261. https://doi.org/10.1111/0022-1082.00494

Gülen, S. G. (1997). Regionalization in the world crude oil market. Energy Journal, 18(2), 109-127. https://doi.org/10.5547/ISSN0195-6574-EJ-Vol18-No2-6

Gülen, S. G. (1999). Regionalization in the world crude oil market: Further results. Energy Journal, 20(1), 125-139.
https://doi.org/10.5547/ISSN0195-6574-EJ-Vol20-No1-7

Hammoudeh, S., Thompson, M. y Ewing, B. (2008). Threshold cointegration analysis of crude oil benchmarks. Energy Journal, 29(4), 79-95. https://doi.org/10.5547/ISSN0195-6574-EJ-Vol29-No4-4

Jia, X., An, H., Fang, W. Sun, X. y Huang, X. (2015). How do correlations of crude oil prices co-move? A grey correlation-based wavelet perspective. Energy Economics, 49, 588-598. https://doi.org/10.1016/j.eneco.2015.03.008

Jiao, J. L., Fan, Y., Wei, Y. M., Han, Z. Y. y Zhang, J. T. (2007). Analysis of the co-movements between Chinese and International crude oil price. International Journal of Global Energy, 27(1), 61-76. https://doi.org/10.1504/IJGEI.2007.012118

Ji, Q. y Fan, Y. (2015). Dynamic integration of world oil prices: A reinvestigation of globalisation vs. regionalization. Applied Energy, 155(1), 171-180. https://doi.org/10.1016/j.apenergy.2015.05.117

Kleit, A.N. (2001). Are regional oil markets growing closer together? An arbitrage cost approach. Energy Journal, 22(2), 1-15.
https://doi.org/10.5547/ISSN0195-6574-EJ-Vol22-No2-1

Kuck, K. y Schweikert, K. (2017). A Markov regime-switching model of crude oil market integration. Journal of Commodity Markets, 6, 16-31. https://doi.org/10.1016/j.jcomm.2017.03.001

Lanza, A., Manera, M. y McAleer, M. (2006). Modeling dynamic conditional correlations in WTI oil forward and futures returns. Finance Research Letters, 3(2), 114-132. https://doi.org/10.1016/j.frl.2006.01.005

Laurent, S., Rombouts, J. V. y Violante, F. (2012). On the forecasting accuracy of multivariate GARCH models. Journal of Applied Econometrics, 27(6), 934-955. https://doi.org/10.1002/jae.1248

Li, R. y Leung, G. C. (2011). The integration of China into the world crude oil market since 1998. Energy Policy, 39(9), 5159-5165. https://doi.org/10.1016/j.enpol.2011.05.048

Liao, H. C., Lin, S. C. y Huang, H. C. (2014). Are crude oil markets globalized or regionalized? Evidence from WTI and Brent. Applied Economics Letters, 21(4), 235-241. https://doi.org/10.1080/13504851.2013.851766

Liu, L., Chen, C. y Wan, J. (2013). Is world oil market "one great pool"? An example from China's and international oil market. Economic Modelling, 35, 364-373. https://doi.org/10.1016/j.econmod.2013.07.027

Lu, F., Hong, Y., Wang, S. Lai, K. y Liu, J. (2014). Time-varying Granger causality tests for applications in global crude oil markets. Energy Economics, 42, 289-298. https://doi.org/10.1016/j.eneco.2014.01.002

Milonas, N. y Henker, T. (2001). Price spread and convenience yield behaviour in the international oil market. Applied Financial Economics, 11(1), 23-36. https://doi.org/10.1080/09603100150210237

Montepeque, J. (2005). Sour crude pricing: A pressing global issue. Middle East Economic Survey, 48(14), 1-42.

Politis, D. N. y Romano, J. P. (1994). The stationary bootstrap. Journal of the American Statistical Association, 89(428), 1303-1313. https://doi.org/10.1080/01621459.1994.10476870

Reboredo, J. C. (2011). How do crude oil prices co-move? A copula approach. Energy Economics, 33(5), 948-955.
https://doi.org/10.1016/j.eneco.2011.04.006

Ruiz, A. y Anguiano, J. E. (2016). Modelación de las dinámicas, volatilidades e interrelaciones de los rendimientos del petróleo mexicano, BRENT y WTI. Ensayos, Revista de Economía, 2, 175-194.

Weiner, R. J. (1991). Is the world oil market one great pool? Energy Journal, 12(3), 95-107.
https://doi.org/10.5547/ISSN0195-6574-EJ-Vol12-No3-7

Wilmot, N. A. (2013). Cointegration in the oil market among regional blends. International Journal Energy Economic Policy, 3(4), 424-433.
Sistema OJS 3 - Metabiblioteca |